
On planet lisp the other day there was an entry for a lisp job at Streamtech
in the Netherlands. In their job posting they had links to a number of fun
problems. I decided to take a stab at one of them and here is what I came
up with.

The Cat in the Hat

Background

(An homage to Theodore Seuss Geisel)

The Cat in the Hat is a nasty creature, But the striped hat he is
wearing has a rather nifty feature.

With one flick of his wrist he pops his top off.

Do you know what’s inside that Cat’s hat? A bunch of small
cats, each with its own striped hat.

Each little cat does the same as line three, All except the littlest
ones, who just say “Why me?”

Because the littlest cats have to clean all the grime, And they’re
tired of doing it time after time!

The Problem

A clever cat walks into a messy room which he needs to clean. Instead of
doing the work alone, it decides to have its helper cats do the work. It
keeps its (smaller) helper cats inside its hat. Each helper cat also has helper
cats in its own hat, and so on. Eventually, the cats reach a smallest size.
These smallest cats have no additional cats in their hats. These unfortunate
smallest cats have to do the cleaning.

The number of cats inside each (non-smallest) cat’s hat is a constant, N.
The height of these cats-in-a-hat is 1

N+1
times the height of the cat whose

hat they are in.

The smallest cats are of height one; these are the cats that get
the work done.

All heights are positive integers.

1

Given the height of the initial cat and the number of worker cats (of
height one), find the number of cats that are not doing any work (cats of
height greater than one) and also determine the sum of all the cats’ heights
(the height of a stack of all cats standing one on top of another).

The Input

The input consists of a sequence of cat-in-hat specifications. Each specifi-
cation is a single line consisting of two positive integers, separated by white
space. The first integer is the height of the initial cat, and the second integer
is the number of worker cats.

Sample Input

216 125
5764801 1679616
0 0

Sample Output

31 671
335923 30275911

Solution - Math

The key to understaning this problem is to understand that the relationship
of the levels given in the problem description.

Hwc =
1

N + 1
Hwc+1

This equation is just as true for the bottom most level of the worker cats as
it is for any of the rest of it. Here we know that Hwc = 1 and so we know
that 1 = 1

N+1
Hwc+1 and it follows that

Hwc+1 = N + 1

and we can also derive

Hwc+2 = (N + 1)2

2

Hwc+n = (N + 1)n

by substituting it back into the equation as we go up the levels.
As we go down the list we can see that the number of cats increases by

powers so at the top level we have one cat (N0). On the second level we have
N1 or N cats, on the third level we have N2 cats and so on up to NLevel for
the number of levels that we have. We can see the same kind of relationship
going from the bottom up. On the lowest level, the level with the worker cats
we start with a size of 1 or (N + 1)0 on the next to the lowest level we have
(N + 1)1 and going up to the top level (N + 1)Level as we described above.

We are given numbers for both of these equations for the number of levels
we have, the height of the top cat

Htc = (N + 1)Level

and the number of worker cats at the bottom

Nwc = NLevel

The numbers we really need is the number of cats in each hat N and the
number of levels Level. If we play with these formulas we can say :

Level

√
Htc = (N + 1)

and
Level

√
Nwc = N

and that for some Level :

Level

√
Htc − Level

√
Nwc = (N + 1)−N

= 1

because we do not have a n-root function in our target computer language,
we will rewrite the above expression

Level

√
Htc − Level

√
Nwc =⇒ Htc

1
Level −Nwc

1
Level

3

Lets try it for the first set of inputs:

Htc = 216

Nwc = 125

216
1
1 − 125

1
1 = 91

216
1
2 − 125

1
2 ∼ 3.52

216
1
3 − 125

1
3 = 1

So we can say that there are 4 levels (0 ⇒ 3) and we know that N =
3
√

125 = 5 and the height of the second level cats is N + 1 = 6
and this allows us to calculate the actual output that we need to know.
First we solve for the total number of all of the non working cats:

Nnwc =
Level∑
x=1

NLevel−x

=
3∑

x=1

53−x

= 52 + 51 + 50

= 25 + 5 + 1

= 31

And then we solve for the total height of all of the cats:

Hac =
Level∑
x=0

NLevel−x(N + 1)|x−Level|

=
3∑

x=0

53−x6|x−3|

= 5360 + 5261 + 5162 + 5063

= 125 · 1 + 25 · 6 + 5 · 36 + 1 · 216

= 125 + 150 + 180 + 216

= 671

4

The Code

The following code doesn’t follow exactly the formulas above. What it does
is recursively descends until we find our level, and then it performs the sums
on the two items we are interested in as it works it’s way back up. While it
is not tail recursive, the number of levels should be serviceable.

(defun catwalk (height workers)

(if (eq height 1) ; kitty must work alone

(list 0 1)

(let ((retlist (catwalk-sub height workers 0)))

(subseq retlist 0 2))))

(defun catwalk-sub (height workers level)

(let ((power (if (not (zerop level)) (/ 1.0 level) 0)))

(cond

((eq 1 (ceiling (- (expt height power) (expt workers power))))

(list 0 workers (round (expt workers (/ 1.0 level))) level))

(t (destructuring-bind (sumworkers sumheight n depth)

(catwalk-sub height workers (+ 1 level))

(progn

(print (list sumworkers sumheight n depth level))

(list (+ (expt n level) sumworkers)

(+ (* (expt n level) (expt (+ n 1) (- depth level))) sumheight)

n depth)))))))

(catwalk 216 125)

(catwalk 5764801 1679616)

5

